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On the representations of the group SU(3) 

S. D. MAJUMDAR 
Department of Physics, Indian Institute of Technology, Kharagpur, India 
Communicated by P. T .  Matthews; MS. received 14th November 1967 

Abstract. By a generalization of techniques developed earlier for dealing with the 
three-dimensional rotation group 0, the generators of the group SU(3) are expressed 
as differential operators involving four independent variables. The  reduction in the 
number of variables simplifies the mathematical problem and makes it easier to 
study the properties of the group and its irreducible representations. From the forms 
of the new operators it becomes apparent that the basic states of an irreducible 
representation of SU(3) are linear combinations of Clebsch-Gordan series of SU(2) 
(or Os).  A convenient expression for the latter, which simplifies the derivation and 
also brings out the significance of certain steps more clearly, is obtained here by a 
proper interpretation of the results given in an earlier paper by the author. Besides 
this certain recursion relations for the Clebsch-Gordan coefficients of SU(2) are also 
found to be helpful for studying the SU(3) representations. These relations are 
derived in a novel way from Gauss’s relations between contiguous hypergeometric 
functions. 

1. Introduction 
The  unitary unimodular group in three dimensions, the so-called SU(3) group, has 

assumed a position of paramount importance in the theory of strongly interacting elemen- 
tary particles (Ikeda et al. 1959, Ne’eman 1961, Salam and Ward 1961, Gell-mann 1962, 
Matthews and Salam 1962) and in some other branches of physics (Elliott and Harvey 1963). 
The  success in classifying the observed particles and resonances according to irreducible 
representations of this group has prompted physicists to study its mathematical properties in 
great detail (Behrends et al. 1962, Pursey 1963, Baird and Biedenharn 1963, de Swart 
1963, BCg and Ruegg 1965, Sharp and von Baeyer 1966). As a consequence, a good 
understanding of the properties of the group and its irreducible representations has now 
been gained. I n  the present paper the main results on SU(3) are derived by a simpler 
method which requires very little of the machinery of the standard representation theory. 
The method is based on the author’s work on the SU(2) group (or the rotation group in 
three dimensions) carried out in connection with a problem in molecular spectroscopy. In  
order to  preserve continuity and make the treatment as self-contained as possible a brief 
survey of this work is given in the following paragraph. 

In  the first paper (Majumdar 1954) on the above-mentioned problem, some simplifica- 
tions were introduced into the three-particle Hamiltonian by removing two of the Eulerian 
angles and expressing the angular momentum operators occurring in it in terms of a single 
variable 4, the angle of rotation about the moving x axis. This facilitated the calculation 
of the rotation-vibration energies of triatomic molecules, and enabled closed expressions 
to be derived for the various corrections to the energy. I n  spite of the advantages, however, 
the method had certain limitations and could not be extended, as such, to molecules con- 
taining more than three atoms. The  extension needed a different approach and was made 
in a subsequent paper (Majumdar 1958 a). The  Euler angles, which proved to be a 
hindrance rather than a help, were discarded and the angular momentum matrices were 
taken as the starting point for further elaboration of the technique. The  matrices were 
first rationalized by a suitable similarity transformation and then represented as operators 
in a space spanned by the functions exp(im4) (m  taking the usual values from - j  to +j) .  
Besides providing a systematic basis for the previous work the new approach yielded an 
alternative set of operators which led to a convenient method (Majumdar 1958 b, to be 
referred to as I) of deriving the Clebsch-Gordan (CG) coefficients.? The  reduction in 
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t CG coefficients of SU(2) alone will be considered in this paper. 
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the number of variables simplified the mathematical problem and made it possible to 
establish a connection between the coefficients and the Gauss hypergeometric function 
(HGF). As the transformation properties of the latter are well known this opened up the 
possibility of finding interesting relationships. 

In  view of the fruitfulness of the above approach it is pertinent to ask if a similar 
reduction could be carried out for the group SU(3). It is found that this is possible if 
we look at the question from a slightly different angle. The matrices for the generators of 
SU(3) are complicated and do not form a convenient starting point for the construction 
of operators of the above type. However, one can start from the differential operators 
which are much easier to handle. By using a basic property of the polynomials which 
transform according to an irreducible representation of the group these differential operators 
can be expressed, without imposing any restrictions on them, in terms of a lesser number 
of variables. T o  illustrate the procedure the case of SU(2) is considered first and the 
operators used in I are rederived from the new viewpoint. The same considerations applied 
to SU(3) give a set of operators which involve only four independent variables instead of 
the usual six. These operators are used in place of the customary ones in the discussions 
of the present paper. Expressed in terms of them, the eigenvalue equation of the quadratic 
Casimir operator takes the form of a partial differential equation in four independent 
variables. The  polynomial solutions of this equation form the basis of an irreducible 
representation of SU(3). 

It is known, and can also be inferred from the forms of the operators (loa)-( 10d) of $ 3, 
that a basic state of an irreducible representation of SU(3) is a linear combination of several 
CG series with the same values of j ,  m and j ,  - jz .  The problem of determining the basic 
states is thus closely connected with the theory of coupling of two angular momenta. As 
already indicated, this theory was treated in I by the new technique and the coupled states 
were obtained as functions of two hypothetical variables dl and c j 2 .  By assigning a meaning 
to these variables it has now been possible to go a step further and write the CG series 
itself in a compact form suitable for application to the problem under investigation. The  
new expression for the CG series (which does not appear to have been recorded in the 
literature) is easily derived from the function X, of I (see the appendix) and contains a 
HGF, with parameters a = - j -m ,  b = j l - j z T j  and c = -2j, as a factor. For fixed 
values of j ,  m and j ,  - j2, this HGF,  together with certain other quantities, separates out 
as a common factor from the series (14) of 4 4 defining a basic state, while the coefficients 

with the appropriate values of Ajl jEJm6 sum up to another HGF. A basic state is thus 
obtained, apart from a simple functional factor, as a product of two HGF’s. This result 
has been obtained already, though not in the same form, by a different method (BCg and 
Ruegg 1965) which essentially consists in constructing the eigenfunctions of the Laplace- 
Beltrami operator on a hypersphere. 

Finally, we briefly mention the other results given in the paper. Section 5 contains a 
simple derivation of the matrix elements of the generators in an arbitrary representation. 
In  the appendix are derived certain relations between contiguous CG coefficients required 
in $54 and 5.  The relations are, of course, not all new, but the use of the H G F  for 
obtaining them is an interesting feature of the present treatment. 

2. Analytical operators for the generators of SU(2) 
An element of the unitary unimodular group SU(2) may be regarded as the matrix 

of the linear transformation of a pair of complex variables ( and 7 .  The generators j,, 
jy? j ,  of this group are multiples of the Pauli spin matrices, and are equivalent to the 
differential operators 

j ,  = $ ( T ~ ~ + @ , J ,  j ,  = ~P(T%-@,J ,  j ,  = & ( & - T ~ A .  (1) 
As is well known, a (2j+ 1)-dimensional representation? of SU(2) is obtained from the 

The  word ‘representation’ will, generally, mean a ‘unitary irreducible representation’. 
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transformation of a symmetric tensor of rank 2j constructed from the vector (t, 7) .  Since 
the components of this tensor span a space of homogeneous polynomials of degree 2j, it 
is possible to write the operators in the simpler forms 

(2) 
. .. 

j +  = j x + i j y  = 2jx-x2a,, j -  = j x -a j y  = a,, j ,  = xa,-j 
where x = [/.I. These operators occur in Naimark’s treatment (Naimark 1964) of the 
three-dimensional rotation group. They are, however, equivalent to the operators con- 
structed by the present author from very different considerations. T o  see this we pass on 
to a new basis by means of the transformation x - ? , , ~ x ~ .  This gives 

These operators go over into the forms given in equation (1) of I (or equation (22) of 
Majumdar 1958 a) when x is replaced by exp(i4). The  equivalence of the two sets of 
operators is thus established. The  analysis also clarifies the meaning of the variable 4 by 
relating it to the vector (4,~) of the linear space on which the matrices of SU(2) operate. 

We can now put the eigenfunctions of the product representation into a more con- 
venient form. These eigenfunctions were obtained in I in several equivalent forms?, one 
of which is 
0, = exp(imdl)xm = exp(im~l)Cjlj,iX-~~(l-x)~~+’2-~F( -j--m, j l - j 2 - j ,  -2j ,  1-X) 

j ,  = x”(j Txa,), j ,  = x?,. 

where x = exp i(42-41) and 

With the above interpretation of 4 this can be written as 

which is a function of degree zero in the variables fl, ql, 6, and q2. Multiplying it by 

we obtain the CG series 
{ ( j  + m)! ( j  - m) ! ) - ”2( t171)”1( t272)3 ’a 

With the aid of the relation between the CG coefficients and the Taylor coefficients of the 
function X, of equation ( 3 )  this can be brought into the form 

(7) ~ l ~ l + ~ l ~ l j l - m l [ 2 ~ ~ +  m 2 7 2 3 2 - m 2 .  

t The  various forms are connected by Kummer’s relations, which must be used with caution 
when the parameters of the H G F  are integers. The  four different forms of xm were obtained in I 
without using Kummer’s relations and are always valid for physical values of j , ,  j,, j ,  m. But for 
non-physical values of these quantities the situation may be otherwise. Let us consider, for instance, 
the relation 

F ( - j - m , 6 - j ;  - 2 j ; z )  = ( I - z ) - d + m F ( - j + m ,  - S - j ;  -2j;z). 

For 6 < -j,  andj,  m physical (or for m > j ,  andj,  6 physical) the highest power of z on the left-hand 
side of the above equation is not greater than Z j ,  while it is greater than 2jon the right-hand side, and 
this is a contradiction. 

2A 
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Both the expressions ( 6 )  and (7)  will be needed for the subsequent discussions. The  
expression (6) does not contain the CG coefficient explicitly, and proves indispensable for 
the development of $4. In  using the expression (7)  we shall find it convenient to replace 
the CG coefficient j 2  occurring in it by the ‘coefficient of the second kind’ (cf. 5 2 [A,, m2 i) 
of I), defined by the equation 

x {( j ,  + m,)! ( j ,  - ml)! ( j2  + m2)! ( j ,  - m 2 ) ! } - l i 2 .  

The results can be expressed more economically in terms of the latter. 

3. Analytical operators for the generators of SU(3) 
I n  extending the above considerations to the group SU(3) we have to consider both the 

defining representation ( 1 ,  0) and its conjugate (0, 1) .  The matrices of these fundamental 
representations operate on the linear spaces of the complex vectors ( E ,  7, 5) and (#, 3, 5) 
which are supposed to be completely independent of each other. In  terms of these six 
variables the eight generators of the group can be written as differential operators. T h e  
matrix forms of these generators, with six of them combined into raising and lowering 
operators, are given in the important article by Behrends et al. (1962). The corresponding 
differential operators are 

I- = 2/6E-1= 77a,-(2i, 
21, = 22/3H1 = 62t-7a,,- t2t+i j25 

6H2 = t a t  + 7an  - 25ar - [ a p  - 772; + 258, 

I ,  = 2/6E1= ~ 2 , - 7 a 2  

2/6E-, = <a,-#a,, 2/6E2 = f a , - % a p  
2/6Ea3 = ca,- i jay, 46E3  = Tar:-%a;.  ( 9 )  

These operators have been used in the past (BCg and Ruegg 1965, Sharp and von Baeyer 
1966) for studying the properties of the group. I n  the present investigation, however, we 
find it convenient to use a different set of operators which can be obtained by the following 
considerations. 

A basic state of a representation (p ,  ?) is a homogeneous polynomial of degree p in 
E ,  7,  5 and of degree q in E ,  7 ,  5. After division by l p Z q  this can be written as an inhomo- 
geneous polynomial of degree not exceeding p in x = (15, y = 7/5, and of degree not 
exceeding q in f = # / E ,  jj = viz. As in the case of SU(2), the operators then take the 
simpler forms 

I- = 2/6E-1= yax-zay 
I ,  = 2/6E1 = xa,-J& 
21, = 22/3H1 = xa,-ya,-~a;+yaj 

Y = 2Hz = Q(p-q)-P+Q 

( l o b )  
(10c) 
( 1 0 4  

4 6 E - z  = ax-ZQ (104 
2 / 6 3 ,  = - &+ X P  (10f)  

4 6 E - 3  = a,-yQ ( l o g )  
2/6E3 = - a,+yP ( 1 0 4  

where P = p-xa,-ya,, Q = p-aaz-ya,. 
These operators involve only four independent variables instead of six and are much more 

convenient to work with than the previous ones. T o  verify that they obey the usual com- 
mutation rules we make use of certain symmetry properties, which are easily found out by 
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inspection. Denoting an interchange by an arrow pointing both ways, we observe that 

( x t ,  -4,y t) - j j ,p -q)  lead to El- -E-1 ,  E 2 t , E - 2 ,  E , t )E- ,  
( x t ,  - j j , y t +  - 4 , p - q )  lead to E,,++ - E h l ,  E2t ,E- , ,  E- , t )E ,  

(i) 
(ii) 

(iii) 
Under all these interchanges the operators P and Q either remain unchanged or transform 
into one another. These symmetry properties, of which only two are independent, con- 
siderably lighten the algebra at certain stages of the calculation. 

( x t j y ,  4-J) lead to E 1 t ) E - l ,  E2++E3, E_,t ,E-, .  

As an illustration let us calculate the quadratic Casimir operator 
C = H12+H22+ 2 (E,E-,+E-,E,) 

,>O 

in terms of the new variables. Starting from EIE-l ,  E2E-2, and using the symmetry 
properties we obtain the expression for 

2 (E,E-,+E-.E,). 
,>O 

When the contributions due to H ,  and H2 are taken into account, the operator takes the 
form 

The  eigenfunctions of C with the eigenvalue +(p2 + q2 +pq+ 3p + 3q) are the basic states 
occurring in the representation (p ,  4). Since the eigenvalue is equal to the first term in 
the expression for C, the eigenfunctions can be determined by solving the equation 

C = $(p2 + q2+pq+  39 + 3q) -i(xn+yjj + l)(a,,+ ayV+PQ). (11) 

(a,:+ a,C+PQ)f = 0. (12) 
This is a partial differential equation of a most inconvenient type, but the task of solving 
it is greatly simplified by taking f to be a simultaneous eigenfunction of H,, H2 and 
H12 + EIE - +E -.,E,. This choice leads to a representation which is explicitly reduced 
with respect to the subgroup of isotopic spin. 

4. Determination of the basic states 
From the remarks made at the end of the last section it is clear that a basic state belong- 

ing to a representation ( p ,  q) is a linear combination of several CG series with the same 
values of j ,  m, j1 -j2. The  numbers j and m are identified with the isotopic spin and its 
x components in physical applications, and 6 j l - j2  is related to the hypercharge Y by 
the equation 

Using the two alternative forms of the CG series given by equations (6) and (7) )  and denoting 
a basic state by the symbol I jmS) ,  we can therefore write 

f 

Y = 2(j1- j2)-$(p-q) .  (13)  

IjmS) = 2 Aj , ia imdCi l j , j~d+my~-m(  -x$)-d+j( -xz-yjj) j~+ja-j  
l a  

- j - m ,  6 - j ,  -2 j ,  I+-= 
xx 

The coefficients Ajliajmb occurring here are to be determined from the condition that 
1 jm6> is a solution of equation (12). Since j ,  m, 6 have fixed values for the various C G  
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series giving rise to a particular state, we can take out a common factor and write the expres- 
sion (14) in the form 

f =  xa+my’-m(-x~)-6+j~  - j - m ,  s - j ,  -2j, ~ + ~ ) g ( x J + y j j ) .  Y.7 i xx 

This suggests a transformation to the variables 

(16) 
Y.7 x = x ,  p = y ,  u = x Z + y j ,  v = l + y .  
xx 

I n  terms of the new variables equation (12) becomes 

{Mu, + pauo + (1 - u)u -1uxa,, + 21-1pZ!a,, + ua,, + 28, 
+U-’(. - 1)v28,, + u-12,’2aL + ($-ha, -pao - u2,)(q- u8,))f = 0. (17) 

The  solution is 
- 6 + j  

f = const. x ~s+mp,- , , i  - :) F ( S + j - p ,  -S+ j -q ,2 j+2 ,  -U) 

x F( -j--m, S-j, -2j, v). (18) 
The  above solution can also be obtained by substituting the expression (15) in equa- 

tion (12) and using relation (A9) of the appendix. This leads to the recurrence relation 

Ajl+h,ja+ + , j m B ( J - 2 j +  1)1/2(J+2)1’2 = (P-2jl)(q-2jz)Ajlizrms (19) 
for two successive coefficients of the linear combination occurring in (15). From this the 
general form of the coefficient is easily seen to be 

A j l j z j m 8  = Ajms{(J-2j)! ( J +  l)!}-’”{(p-2ji)! (q-2jZ)!)- ’ .  (20) 
Inserting this in equation (15), we have 

JjmS) = Ajm6]ljmS> = Ajm6{(J-2 j ) !  ( J +  1)!}-”2{(p-2j1)! (q-2j2)!}-1 

where the values of j ,  and j ,  lie within the limits j < j l+j, , .p 2 2jl, q 2jz. This 
alternative form of the solution is equally convenient for practical applications and will 
be used in $ 5  for deriving the matrices of the generators in an arbitrary representation. 
I t  is easily transformed into the previous form (18) by using the expression (6) for the CG 
series and carrying out the summation over j,. With the value of Ajlizjmd just found the 
sum reduces to another HGF, and we have 

IjmS) = Ajms{(2j)!}1’2{(2j+ I)! (6 + j ) !  ( -  S + j ) ! } - l / z { (  - 6 - j + p ) !  (8 - j +  q ) ! } - l  

XX6+mYd-m(-- xx) - - + jF(S + j - p ,  - 6 + j - q , 2 j  + 2, - XZ -yP) 

5. The matrices of the generators 
Under transformation of the isotopic spin subgroup generated by H I ,  E,, the operators 

Ez,  E ,  transform like the & &  components of an irreducible tensor (bispmor) operator 
TlI2‘‘ of rank &, yhile - E - 3 ,  E - ,  transform like the 8 components of the Hermitian 
adjoint operator T,,,?. Using the Wigner-Eckart theorem, it is therefore possible to 
write the matrix elements in the factorized form 

where (j’S’llTlJ j S )  is the reduced matrix element. Starting from these considerations 
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Pursey (1963) and Baird and Biedenharn (1963) independently derived the matrix forms 
of E,2,  E,, in an arbitrary representation. We shall see, however, that the same results 
can be obtained more easily by using the relations between contiguous CG coefficients. 

By equation (A6a) of the appendix 

and by equation (ASa) 

From equations ( lOf) ,  (21), (23) and (24) me have 

+(j -m)(  Zj(2j-t 1) )"2(S-j+l+q);i-!,m+C;,S+?:\. (25) 

Analogous formulae for 2/6(E-,, E3, E-,)lljm8)) are easily obtained from this by using 
the symmetry properties discussed in 5 3. In  case (i), for instance, the simultaneous 
interchanges x t ,  -2, y t j  -7, p t ,  q transform E ,  into E - 2 ,  and iljms )) into 
(-)-d+mlij - m  -8). After this symmetry operation the matrices of E,  and E - ,  are 
easily determined from the condition that they must be Hermitian conjugates of each 
other in a unitary representation of the group. In  cases (ii) and (iii) the function lijm8) 
transforms into (-)jfmlij m -8)  and ( - ) -d+j l l j  -m S>> respectively. These symmetry 
operations enable us to determine the matrices E3 and E-3 .  

Appendix. Relations between contiguous CG coefficients 

is the coefficient of xm, in the Taylor expansion of the function 

The  occurrence of the HGF in the expression for x', has interesting consequences. T h e  
well-known transformation properties of this function enable X, to be written in a number 
of different forms, each form leading to a different expression for the CG coefficient. 
Secondly, for every relation between contiguous HGF's (Magnus and Oberhettinger 1948, 
ErdClyi 1953) there exists a relation between contiguous CG coefficients with j values 
differing by 0, 24. However, like the various expressions for the CG coefficients these 
relations are also not all independent and can be obtained, after symmetry operations, as 
linear combinations of only a few of them. Some of these relations, particularly, those 
that were required in the preceding sections, will be derived here by using the properties 
of the HGF. A list of the formulae and symbols needed for this purpose is given below. 

For the CG coeffcients occurring most frequently we shall use the abbreviations 

It was shown in I that the CG coefficient of the second kind defined by equation (8) 

X m  = c.  3 1 3 2 1  . X - j Z ( l - ~ ) f I . + W F  ( - j  - m, j ,  - j2  - j ,  - 2j, 1 - x). (AI) 
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The  corresponding 3-j symbols will be denoted by 

where j ,  = j ,  m3 = - m, and m, + m2 + m3 = 0. The greater symmetry of the 3-j symbol 
facilitates passage from one relation to another. 

T h e  HGF F(u, b, c, x) will be denoted by F and the contiguous functions F(u- 1, 
b, c, x), F(u, b f l ,  c, x), ... by F ( a - l ) ,  F(b+l),  ... . 

We shall also require the well-known recurrence formulae connecting CG coefficients 
with the same j but different m values (cf. equations (27) and (28) of Majumdar 1958 a). 
These are 

Let us consider now the function 
x m ( 1 - X ) .  

According to the theorem stated in the beginning of this section, the coefficient of xma in 
the Taylor expansion of this function is 

ml+l  mz-1  m 
( K ) - (  j 1  

Changing j l  to j l  + 8, j 2  to j 2  + 8 in the function (A4) and keeping j and m unchanged we 
see that this is also equal to 

(CY, f 

Gilt t ,J2+ a. i  
Therefore, by equation (4),  

where J = j ,  + j 2  + j,. I n  terms of the 3-j symbols this can be written as 

= [C](J-  2j3 + 1)1/2(J+2)1’2. 

After simple manipulation this gives a relation which is deduced by Edmonds from the 
properties of the 6-j symbols (cf. Edmonds 1957, equation (3.7.12), chap. 3) .  

Next, let us consider the relation 
b(c - U) 

F = F(a-I,c-I)+.- x F ( b + l , c + l )  
c(c - 1 )  

with a = -j-m, b = j l - j2 - j ,  c = -2j, x = 1 -x. Multiplying it by Cj , j2 j zJ -2 j  and 
equating the coefficients of xf2 + mz we have 
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0 = [q(2j3+1)(j1+m1+ 1)112+[A]{(j3-m3+ 1)(J-2j2+1)(J+2)}112 

Changing the signs of m,, m2, m3 in this equation, using the symmetry of the 3-j symbol 
for reversal of signs, changing m, to ml+ 1,  m3 to m3- 1, and using (A2), we have 

21 1 

or, in terms of the 3-j symbols, 

+ [B]{(j3 + m3)(J- 2j3 + l)(J-2j1)}1/2. (A64 

= - [A1(j3 - j ,  - m2){(j3 - m3 + 1)(J- 2j2 + 1)(J+ 2)}lI2 
+ [Bl(j, +j1 + m2 + 1){(j3 + m3)(J- 2j3 + I ) ( J -  2j1)}112. 

From (A%), (A6b) and (A7) follows the relation 

or the equivalent relation 

Another useful relation can be obtained by eliminating ’2 j )  from 

(A3), (A%), and from the relation obtained from (A5a) by changing m, to m, - 1 and m2 
to m2+ 1. The  result is 

= - ( J -  2j+ 1)1’2(5+2)1’2(K). (-49) 
The  above relations are sufficient for deriving the results of the preceding sections. 

However, a few more are given below as further illustrations of the use of the H G F  in the 
present problem. 

(i) (b-c+l)F+(c- l )F(a- l ,  c - l ) - b ( l - x ) F ( b + l )  = 0 gives 

jl j 2 + *  j++, )(J+2)1:2(2j+ 1)1’2 
m, m2-4 m-4 

0 = (K)(J-2j1+1)1’2(2j+2)1’2- 

j1-4 j 2 + 4  j 
ml+8 m2-6 m 

) ( J -  2j2)112(2j + 2)? 

(ii) F-F(a+l)+(b/c)xF(a+l,  b + l ,  c + l )  = 0, combined with ( M ) ,  gives 

(iii) x dF/dx+aF = &(a+ l), multiplied by Cjlj,ixJ-2~, gives (after symmetry opera- 
tions) the recurrence formula (M) .  
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